Accelerating the Delfs-Galbraith Algorithm with Fast Subfield Root Detection

Maria Corte-Real Santos

University College London
Based on joint work with Craig Costello and Jia Shi
Isogeny-based Cryptography Workshop, Birmingham
March 18, 2022

Outline

(1) The Supersingular Isogeny Problem
(2) The Delfs-Galbraith Algorithm
(3) SuperSolver: Accelerating Delfs-Galbraith's Algorithm
(4) Worked Example
(5) Results and Conclusions

Outline

(1) The Supersingular Isogeny Problem
(2) The Delfs-Galbraith Algorithm
(3) SuperSolver: Accelerating Delfs-Galbraith's Algorithm

4 Worked Example
(5) Results and Conclusions

The Supersingular Isogeny Problem

In its most general form, the supersingular isogeny problem asks to find an isogeny

$$
\phi: E_{1} \rightarrow E_{2}
$$

between two given supersingular elliptic curves $E_{1} / \mathbb{F}_{p^{2}}$ and $E_{2} / \mathbb{F}_{p^{2}}$.

The Supersingular Isogeny Problem

In its most general form, the supersingular isogeny problem asks to find an isogeny

$$
\phi: E_{1} \rightarrow E_{2}
$$

between two given supersingular elliptic curves $E_{1} / \mathbb{F}_{p^{2}}$ and $E_{2} / \mathbb{F}_{p^{2}}$.
The best known classical attack against this general problem is the Delfs-Galbraith algorithm.

Motivation and Contributions

Difficulty of the supersingular isogeny problem affects the security of B-SIDH, SQISign (soundness), etc.

Motivation and Contributions

Difficulty of the supersingular isogeny problem affects the security of B-SIDH, SQISign (soundness), etc. So, determining the concrete complexity of Delfs-Galbraith is important for the potential standardisation of these schemes.

Motivation and Contributions

Difficulty of the supersingular isogeny problem affects the security of B-SIDH, SQISign (soundness), etc. So, determining the concrete complexity of Delfs-Galbraith is important for the potential standardisation of these schemes.

Our contributions:

Motivation and Contributions

Difficulty of the supersingular isogeny problem affects the security of B-SIDH, SQISign (soundness), etc. So, determining the concrete complexity of Delfs-Galbraith is important for the potential standardisation of these schemes.

Our contributions:

- Provide an optimised implementation of the Delfs-Galbraith algorithm: Solver.

Motivation and Contributions

Difficulty of the supersingular isogeny problem affects the security of B-SIDH, SQISign (soundness), etc. So, determining the concrete complexity of Delfs-Galbraith is important for the potential standardisation of these schemes.

Our contributions:

- Provide an optimised implementation of the Delfs-Galbraith algorithm: Solver.
- Develop an efficient method to detect if a polynomial $f(X) \in \mathbb{F}_{p^{d}}[X]$ has a root in \mathbb{F}_{p}.

Motivation and Contributions

Difficulty of the supersingular isogeny problem affects the security of B-SIDH, SQISign (soundness), etc. So, determining the concrete complexity of Delfs-Galbraith is important for the potential standardisation of these schemes.

Our contributions:

- Provide an optimised implementation of the Delfs-Galbraith algorithm: Solver.
- Develop an efficient method to detect if a polynomial $f(X) \in \mathbb{F}_{p^{d}}[X]$ has a root in \mathbb{F}_{p}.
- Use this to introduce an improved attack, SuperSolver, with lower concrete complexity.

The Supersingular Isogeny Graph $\mathcal{X}\left(\overline{\mathbb{F}}_{p}, \ell\right)$

Let p be a large prime, $p \nmid \ell$.

The Supersingular Isogeny Graph $\mathcal{X}\left(\overline{\mathbb{F}}_{p}, \ell\right)$

Let p be a large prime, $p \nmid \ell$.
Vertices: $\overline{\mathbb{F}}_{p}$-isomorphism classes of supersingular elliptic curves E over $\overline{\mathbb{F}}_{p}$. These classes are represented by curves defined over $\mathbb{F}_{p^{2}}$ and are represented by a j-invariant in $\mathbb{F}_{p^{2}}$.

The Supersingular Isogeny Graph $\mathcal{X}\left(\overline{\mathbb{F}}_{p}, \ell\right)$

Let p be a large prime, $p \nmid \ell$.
Vertices: $\overline{\mathbb{F}}_{p}$-isomorphism classes of supersingular elliptic curves E over $\overline{\mathbb{F}}_{p}$. These classes are represented by curves defined over $\mathbb{F}_{p^{2}}$ and are represented by a j-invariant in $\mathbb{F}_{p^{2}}$.

Edges: ℓ-isogenies defined over $\overline{\mathbb{F}}_{p}$.

The Supersingular Isogeny Graph $\mathcal{X}\left(\overline{\mathbb{F}}_{p}, \ell\right)$

Let p be a large prime, $p \nmid \ell$.
Vertices: $\overline{\mathbb{F}}_{p}$-isomorphism classes of supersingular elliptic curves E over $\overline{\mathbb{F}}_{p}$. These classes are represented by curves defined over $\mathbb{F}_{p^{2}}$ and are represented by a j-invariant in $\mathbb{F}_{p^{2}}$.

Edges: ℓ-isogenies defined over $\overline{\mathbb{F}}_{p}$.
Properties:

The Supersingular Isogeny Graph $\mathcal{X}\left(\overline{\mathbb{F}}_{p}, \ell\right)$

Let p be a large prime, $p \nmid \ell$.
Vertices: $\overline{\mathbb{F}}_{p}$-isomorphism classes of supersingular elliptic curves E over $\overline{\mathbb{F}}_{p}$. These classes are represented by curves defined over $\mathbb{F}_{p^{2}}$ and are represented by a j-invariant in $\mathbb{F}_{p^{2}}$.

Edges: ℓ-isogenies defined over $\overline{\mathbb{F}}_{p}$.
Properties:

- There are $\approx \frac{p}{12}$ vertices: this is the number of supersingular j-invariants (in $\mathbb{F}_{p^{2}}$).

The Supersingular Isogeny Graph $\mathcal{X}\left(\overline{\mathbb{F}}_{p}, \ell\right)$

Let p be a large prime, $p \nmid \ell$.
Vertices: $\overline{\mathbb{F}}_{p}$-isomorphism classes of supersingular elliptic curves E over $\overline{\mathbb{F}}_{p}$. These classes are represented by curves defined over $\mathbb{F}_{p^{2}}$ and are represented by a j-invariant in $\mathbb{F}_{p^{2}}$.

Edges: ℓ-isogenies defined over $\overline{\mathbb{F}}_{p}$.
Properties:

- There are $\approx \frac{p}{12}$ vertices: this is the number of supersingular j-invariants (in $\mathbb{F}_{p^{2}}$).
- $(\ell+1)$-regular: one outgoing edge for each of the $\ell+1$ cyclic subgroups of $E[\ell]$.

The Supersingular Isogeny Graph $\mathcal{X}\left(\overline{\mathbb{F}}_{p}, \ell\right)$

Let p be a large prime, $p \nmid \ell$.
Vertices: $\overline{\mathbb{F}}_{p}$-isomorphism classes of supersingular elliptic curves E over $\overline{\mathbb{F}}_{p}$. These classes are represented by curves defined over $\mathbb{F}_{p^{2}}$ and are represented by a j-invariant in $\mathbb{F}_{p^{2}}$.

Edges: ℓ-isogenies defined over $\overline{\mathbb{F}}_{p}$.
Properties:

- There are $\approx \frac{p}{12}$ vertices: this is the number of supersingular j-invariants (in $\mathbb{F}_{p^{2}}$).
- $(\ell+1)$-regular: one outgoing edge for each of the $\ell+1$ cyclic subgroups of $E[\ell]$.
- Connected with diameter $O(\log p)$.

The Supersingular Isogeny Graph $\mathcal{X}\left(\overline{\mathbb{F}}_{p}, \ell\right)$

Let p be a large prime, $p \nmid \ell$.
Vertices: $\overline{\mathbb{F}}_{p}$-isomorphism classes of supersingular elliptic curves E over $\overline{\mathbb{F}}_{p}$. These classes are represented by curves defined over $\mathbb{F}_{p^{2}}$ and are represented by a j-invariant in $\mathbb{F}_{p^{2}}$.

Edges: ℓ-isogenies defined over $\overline{\mathbb{F}}_{p}$.
Properties:

- There are $\approx \frac{p}{12}$ vertices: this is the number of supersingular j-invariants (in $\mathbb{F}_{p^{2}}$).
- $(\ell+1)$-regular: one outgoing edge for each of the $\ell+1$ cyclic subgroups of $E[\ell]$.
- Connected with diameter $O(\log p)$.
- Ramanujan graph: rapid mixing.

The Supersingular Isogeny Graph $\mathcal{X}\left(\overline{\mathbb{F}}_{p}, \ell\right)$

Outline

(1) The Supersingular Isogeny Problem
(2) The Delfs-Galbraith Algorithm
(3) SuperSolver: Accelerating Delfs-Galbraith's Algorithm

4 Worked Example

(5) Results and Conclusions

Key Observation

$$
\begin{aligned}
& \bigcirc j(E) \in \mathbb{F}_{p^{2}} \backslash \mathbb{F}_{p} \\
& \bigcirc j(E) \in \mathbb{F}_{p}
\end{aligned}
$$

O

 00000000
 - 0 find
Finding paths - is the bottleneck

The Delfs-Galbraith Algorithm

The Delfs-Galbraith Algorithm

The Delfs-Galbraith Algorithm

Modular Polynomial

The modular polynomial (of level ℓ) $\Phi_{\ell}(X, Y) \in \mathbb{Z}[X, Y]$ parameterizes pairs of ℓ-isogenous elliptic curves in terms of their j-invariants.

Modular Polynomial

The modular polynomial (of level ℓ) $\Phi_{\ell}(X, Y) \in \mathbb{Z}[X, Y]$ parameterizes pairs of ℓ-isogenous elliptic curves in terms of their j-invariants. It is:

Modular Polynomial

The modular polynomial (of level ℓ) $\Phi_{\ell}(X, Y) \in \mathbb{Z}[X, Y]$ parameterizes pairs of ℓ-isogenous elliptic curves in terms of their j-invariants. It is:

- symmetric in X and Y

Modular Polynomial

The modular polynomial (of level ℓ) $\Phi_{\ell}(X, Y) \in \mathbb{Z}[X, Y]$ parameterizes pairs of ℓ-isogenous elliptic curves in terms of their j-invariants. It is:

- symmetric in X and Y
- of degree N_{ℓ} in both X and Y, where

$$
N_{\ell}:=\prod_{i=1}^{n}\left(\ell_{i}+1\right) \ell_{i}^{e_{i}-1}, \text { for prime decomposition } \prod_{i=1}^{n} \ell_{i}^{e_{i}} \text { of } \ell .
$$

$N_{\ell}=\ell+1$ for ℓ prime.

Modular Polynomial

The modular polynomial (of level ℓ) $\Phi_{\ell}(X, Y) \in \mathbb{Z}[X, Y]$ parameterizes pairs of ℓ-isogenous elliptic curves in terms of their j-invariants. It is:

- symmetric in X and Y
- of degree N_{ℓ} in both X and Y, where

$$
N_{\ell}:=\prod_{i=1}^{n}\left(\ell_{i}+1\right) \ell_{i}^{e_{i}-1}, \text { for prime decomposition } \prod_{i=1}^{n} \ell_{i}^{e_{i}} \text { of } \ell
$$

$N_{\ell}=\ell+1$ for ℓ prime.

$$
\Phi_{\ell}\left(j_{1}, j_{2}\right)=0 \Longleftrightarrow j_{1}, j_{2} \text { are } j \text {-invariants of } \ell \text {-isogenous elliptic curves. }
$$

Modular Polynomial

The modular polynomial (of level ℓ) $\Phi_{\ell}(X, Y) \in \mathbb{Z}[X, Y]$ parameterizes pairs of ℓ-isogenous elliptic curves in terms of their j-invariants. It is:

- symmetric in X and Y
- of degree N_{ℓ} in both X and Y, where

$$
N_{\ell}:=\prod_{i=1}^{n}\left(\ell_{i}+1\right) \ell_{i}^{e_{i}-1}, \text { for prime decomposition } \prod_{i=1}^{n} \ell_{i}^{e_{i}} \text { of } \ell .
$$

$N_{\ell}=\ell+1$ for ℓ prime.

$$
\Phi_{\ell}\left(j_{1}, j_{2}\right)=0 \Longleftrightarrow j_{1}, j_{2} \text { are } j \text {-invariants of } \ell \text {-isogenous elliptic curves. }
$$

This tells us that the roots of $\Phi_{\ell, p}(X, j)$ are neighbours of j in $\mathcal{X}\left(\mathbb{F}_{p}, \ell\right)$.

Modular Polynomial

The modular polynomial (of level ℓ) $\Phi_{\ell}(X, Y) \in \mathbb{Z}[X, Y]$ parameterizes pairs of ℓ-isogenous elliptic curves in terms of their j-invariants. It is:

- symmetric in X and Y
- of degree N_{ℓ} in both X and Y, where

$$
N_{\ell}:=\prod_{i=1}^{n}\left(\ell_{i}+1\right) \ell_{i}^{e_{i}-1}, \text { for prime decomposition } \prod_{i=1}^{n} \ell_{i}^{e_{i}} \text { of } \ell .
$$

$N_{\ell}=\ell+1$ for ℓ prime.

$$
\Phi_{\ell}\left(j_{1}, j_{2}\right)=0 \Longleftrightarrow j_{1}, j_{2} \text { are } j \text {-invariants of } \ell \text {-isogenous elliptic curves. }
$$

This tells us that the roots of $\Phi_{\ell, p}(X, j)$ are neighbours of j in $\mathcal{X}\left(\mathbb{F}_{p}, \ell\right)$. Reducing coefficients $\bmod p$ we can work with $\Phi_{\ell, p}(X, Y) \in \mathbb{F}_{p}[X, Y]$.

Taking a step in $\mathcal{X}\left(\overline{\mathbb{F}}_{p}, \ell\right)$

Taking a self-avoiding step in $\mathcal{X}\left(\overline{\mathbb{F}}_{p}, \ell\right)$:

Taking a step in $\mathcal{X}\left(\overline{\mathbb{F}}_{p}, \ell\right)$

Taking a self-avoiding step in $\mathcal{X}\left(\overline{\mathbb{F}}_{p}, \ell\right)$:

1. Store the current and previous j-invariants j_{c} and j_{p}.

Taking a step in $\mathcal{X}\left(\overline{\mathbb{F}}_{p}, \ell\right)$

Taking a self-avoiding step in $\mathcal{X}\left(\overline{\mathbb{F}}_{p}, \ell\right)$:

2. Find the $N_{\ell}-1$ roots of $\Phi_{\ell, p}\left(X, j_{c}\right) /\left(X-j_{p}\right)$.

Taking a step in $\mathcal{X}\left(\overline{\mathbb{F}}_{p}, \ell\right)$

Taking a self-avoiding step in $\mathcal{X}\left(\overline{\mathbb{F}}_{p}, \ell\right)$:

3. Choose one of these and walk to the corresponding node.

Concrete Complexity of Delfs-Galbraith

Solver is an optimised implementation of the Delfs-Galbraith algorithm with $\ell=2$.

Why $\ell=2$? Taking a step in $\mathcal{X}\left(\mathbb{F}_{p}, 2\right)$ means computing a square root.

Concrete Complexity of Delfs-Galbraith

Solver is an optimised implementation of the Delfs-Galbraith algorithm with $\ell=2$.

Why $\ell=2$? Taking a step in $\mathcal{X}\left(\mathbb{F}_{p}, 2\right)$ means computing a square root.

We use Solver to find the concrete complexity of Delfs-Galbraith.

Concrete Complexity of Delfs-Galbraith

Solver is an optimised implementation of the Delfs-Galbraith algorithm with $\ell=2$.

Why $\ell=2$? Taking a step in $\mathcal{X}\left(\mathbb{F}_{p}, 2\right)$ means computing a square root.

We use Solver to find the concrete complexity of Delfs-Galbraith.
Experimentally, given a node $j \in \mathbb{F}_{p^{2}} \backslash \mathbb{F}_{p}$, the average number of \mathbb{F}_{p} multiplications needed to find a path to a node $j^{\prime} \in \mathbb{F}_{p}$ is

$$
c \cdot \sqrt{p} \cdot \log _{2} p
$$

with $0.75 \leq c \leq 1.05$.

Outline

(1) The Supersingular Isogeny Problem
(2) The Delfs-Galbraith Algorithm
(3) SuperSolver: Accelerating Delfs-Galbraith's Algorithm

4 Worked Example

(5) Results and Conclusions

Overview

SuperSolver is a new attack that improves on the concrete complexity of the Delfs-Galbraith algorithm.

Overview

SuperSolver is a new attack that improves on the concrete complexity of the Delfs-Galbraith algorithm. It changes the first step: the subfield search.

Overview

SuperSolver is a new attack that improves on the concrete complexity of the Delfs-Galbraith algorithm. It changes the first step: the subfield search.

At each step, we want to know if the current node j_{c} is ℓ-isogenous to a $j \in \mathbb{F}_{p}$.

Overview

SuperSolver is a new attack that improves on the concrete complexity of the Delfs-Galbraith algorithm. It changes the first step: the subfield search.

At each step, we want to know if the current node j_{c} is ℓ-isogenous to a $j \in \mathbb{F}_{p}$.

Key Observation

At each step, the precise values of the ℓ-isogenous neighbours do not need to be known, only whether it lies in \mathbb{F}_{p}.

Overview

At each step of the random walk in $\mathcal{X}\left(\overline{\mathbb{F}}_{p}, 2\right)$, SuperSolver inspects the ℓ-isogeny graph with fast subfield root detection for ℓ in a carefully chosen set, to efficiently detect whether j_{c} has an ℓ-isogenous neighbour in \mathbb{F}_{p}.

Overview

At each step of the random walk in $\mathcal{X}\left(\overline{\mathbb{F}}_{p}, 2\right)$, SuperSolver inspects the ℓ-isogeny graph with fast subfield root detection for ℓ in a carefully chosen set, to efficiently detect whether j_{c} has an ℓ-isogenous neighbour in \mathbb{F}_{p}.

Overview

At each step of the random walk in $\mathcal{X}\left(\overline{\mathbb{F}}_{p}, 2\right)$, SuperSolver inspects the ℓ-isogeny graph with fast subfield root detection for ℓ in a carefully chosen set, to efficiently detect whether j_{c} has an ℓ-isogenous neighbour in \mathbb{F}_{p}.

Fast Subfield Root Detection

Recall to take a step in $\mathcal{X}\left(\overline{\mathbb{F}}_{p}, \ell\right)$ we find the roots of

$$
\Phi_{\ell, p}\left(X, j_{c}\right) \in \mathbb{F}_{p^{2}}[X] .
$$

Fast Subfield Root Detection

Recall to take a step in $\mathcal{X}\left(\overline{\mathbb{F}}_{p}, \ell\right)$ we find the roots of

$$
\Phi_{\ell, p}\left(X, j_{c}\right) \in \mathbb{F}_{p^{2}}[X] .
$$

We want a fast way of detecting whether it has a root in \mathbb{F}_{p} without finding roots.

Fast Subfield Root Detection

Recall to take a step in $\mathcal{X}\left(\overline{\mathbb{F}}_{p}, \ell\right)$ we find the roots of

$$
\Phi_{\ell, p}\left(X, j_{c}\right) \in \mathbb{F}_{p^{2}}[X] .
$$

We want a fast way of detecting whether it has a root in \mathbb{F}_{p} without finding roots.

Lemma

Let π be the p-power Frobenius map and f a polynomial in $\mathbb{F}_{p^{2}}[X]$. Then, $\operatorname{gcd}(f, \pi(f))$ is the largest divisor of f defined over \mathbb{F}_{p}. In particular, if

$$
\operatorname{deg}(\operatorname{gcd}(f, \pi(f)))= \begin{cases}1, & f \text { has a root in } \mathbb{F}_{p} \\ 0, & f \text { does not have a root in } \mathbb{F}_{p}\end{cases}
$$

Fast Subfield Root Detection

Problem: In general $f, \pi(f) \in \mathbb{F}_{p^{2}}[X]$ and we want to avoid costly multiplications in $\mathbb{F}_{p^{2}}$.

Fast Subfield Root Detection

Problem: In general $f, \pi(f) \in \mathbb{F}_{p^{2}}[X]$ and we want to avoid costly multiplications in $\mathbb{F}_{p^{2}}$.

Observation

For polynomials $f_{1}, f_{2} \in \mathbb{F}_{p^{2}}[X]$, if

$$
g_{1}=a f_{1}+b f_{2}, \text { and } g_{2}=c f_{1}+d f_{2},
$$

with $a, b, c, d \in \mathbb{F}_{p^{2}}$ such that $a d-b c \neq 0$ with we have

$$
\operatorname{gcd}\left(f_{1}, f_{2}\right)=\operatorname{gcd}\left(g_{1}, g_{2}\right)
$$

Fast Subfield Root Detection

Problem: In general $f, \pi(f) \in \mathbb{F}_{p^{2}}[X]$ and we want to avoid costly multiplications in $\mathbb{F}_{p^{2}}$.

Solution: Let $\alpha \in \mathbb{F}_{p^{2}}$ be such that $\mathbb{F}_{p^{2}}=\mathbb{F}_{p}(\alpha)$. For $f(X):=\Phi_{\ell, p}\left(X, j_{c}\right)$, if

$$
g_{1}=\frac{1}{2}(f+\pi(f)), \text { and } g_{2}=\frac{\alpha}{2}(f-\pi(f)),
$$

then $g_{1}, g_{2} \in \mathbb{F}_{p}[X]$ and $\operatorname{gcd}(f, \pi(f))=\operatorname{gcd}\left(g_{1}, g_{2}\right)$.

Fast Subfield Root Detection

Problem: In general $f, \pi(f) \in \mathbb{F}_{p^{2}}[X]$ and we want to avoid costly multiplications in $\mathbb{F}_{p^{2}}$.

Solution: Let $\alpha \in \mathbb{F}_{p^{2}}$ be such that $\mathbb{F}_{p^{2}}=\mathbb{F}_{p}(\alpha)$. For $f(X):=\Phi_{\ell, p}\left(X, j_{c}\right)$, if

$$
g_{1}=\frac{1}{2}(f+\pi(f)), \text { and } g_{2}=\frac{\alpha}{2}(f-\pi(f)),
$$

then $g_{1}, g_{2} \in \mathbb{F}_{p}[X]$ and $\operatorname{gcd}(f, \pi(f))=\operatorname{gcd}\left(g_{1}, g_{2}\right)$.
We can avoid all multiplications over $\mathbb{F}_{p^{2}}$: if we write the coefficients of $f(X)$ as $a_{k}^{(1)}+a_{k}^{(2)} \alpha\left(\right.$ say $\left.\alpha^{2}=-1\right)$, then

$$
g_{1}(X)=\sum_{k=0}^{n} a_{k}^{(1)} X^{k} \text {, and } g_{2}(X)=\sum_{k=0}^{n} a_{k}^{(2)} X^{k} \text {. }
$$

List of Optimal ℓ 's

Though the inspection of the neighbours of j_{c} in the ℓ-isogeny graph increases the total number of \mathbb{F}_{p} multiplications at each step, more nodes are checked.

List of Optimal ℓ 's

Though the inspection of the neighbours of j_{c} in the ℓ-isogeny graph increases the total number of \mathbb{F}_{p} multiplications at each step, more nodes are checked.

List of Optimal ℓ 's

Though the inspection of the neighbours of j_{c} in the ℓ-isogeny graph increases the total number of \mathbb{F}_{p} multiplications at each step, more nodes are checked.

We want to compute a list of ℓ 's that minimise $\# \mathbb{F}_{p}$ multiplications per node inspected.

List of Optimal ℓ 's

Though the inspection of the neighbours of j_{c} in the ℓ-isogeny graph increases the total number of \mathbb{F}_{p} multiplications at each step, more nodes are checked.

We want to compute a list of ℓ 's that minimise $\# \mathbb{F}_{p}$ multiplications per node inspected.
(1) Determine the cost per node revealed of taking a step in the 2-isogeny graph: cost $_{2}$

List of Optimal ℓ 's

Though the inspection of the neighbours of j_{c} in the ℓ-isogeny graph increases the total number of \mathbb{F}_{p} multiplications at each step, more nodes are checked.

We want to compute a list of ℓ 's that minimise $\# \mathbb{F}_{p}$ multiplications per node inspected.
(1) Determine the cost per node revealed of taking a step in the 2-isogeny graph: cost $_{2}$
(2) Determine the cost per node inspected in the ℓ-isogeny graph: cost $_{\ell}$.

List of Optimal ℓ 's

Though the inspection of the neighbours of j_{c} in the ℓ-isogeny graph increases the total number of \mathbb{F}_{p} multiplications at each step, more nodes are checked.

We want to compute a list of ℓ 's that minimise $\# \mathbb{F}_{p}$ multiplications per node inspected.
(1) Determine the cost per node revealed of taking a step in the 2-isogeny graph: cost $_{2}$
(2) Determine the cost per node inspected in the ℓ-isogeny graph: $\operatorname{cost}_{\ell}$.
(3) Determine a list $L=\left[\ell_{1}, \ldots, \ell_{n}\right]$ of $\ell_{i}>2$ with $\operatorname{cost}_{\ell}<\operatorname{cost}_{2}$

List of Optimal ℓ 's

Though the inspection of the neighbours of j_{c} in the ℓ-isogeny graph increases the total number of \mathbb{F}_{p} multiplications at each step, more nodes are checked.

We want to compute a list of ℓ 's that minimise $\# \mathbb{F}_{p}$ multiplications per node inspected.
(1) Determine the cost per node revealed of taking a step in the 2-isogeny graph: cost $_{2}$
(2) Determine the cost per node inspected in the ℓ-isogeny graph: $\operatorname{cost}_{\ell}$.
(3) Determine a list $L=\left[\ell_{1}, \ldots, \ell_{n}\right]$ of $\ell_{i}>2$ with $\operatorname{cost}_{\ell}<\operatorname{cost}_{2}$
(9) Find the subset of L that minimises the total cost of each step:

$$
\text { cost }=\frac{\text { total } \# \text { of } \mathbb{F}_{p} \text { multiplications }}{\text { total } \# \text { of nodes revealed }}
$$

List of Optimal ℓ 's

Though the inspection of the neighbours of j_{c} in the ℓ-isogeny graph increases the total number of \mathbb{F}_{p} multiplications at each step, more nodes are checked.

We want to compute a list of ℓ 's that minimise $\# \mathbb{F}_{p}$ multiplications per node inspected.
(1) Determine the cost per node revealed of taking a step in the 2-isogeny graph: cost $_{2}$
(2) Determine the cost per node inspected in the ℓ-isogeny graph: cost $_{\ell}$.
(3) Determine a list $L=\left[\ell_{1}, \ldots, \ell_{n}\right]$ of $\ell_{i}>2$ with $\operatorname{cost}_{\ell}<\operatorname{cost}_{2}$
(9) Find the subset of L that minimises the total cost of each step:

$$
\text { cost }=\frac{\text { total } \# \text { of } \mathbb{F}_{p} \text { multiplications }}{\text { total } \# \text { of nodes revealed }}
$$

Calculating the list of optimal ℓ 's can be done in precomputation.

Outline

(1) The Supersingular Isogeny Problem
(2) The Delfs-Galbraith Algorithm
(3) SuperSolver: Accelerating Delfs-Galbraith's Algorithm

4 Worked Example

Worked Example: Precomputation

Let $p=2^{20}-3$.

- Construct the extension field $\mathbb{F}_{p^{2}}=\mathbb{F}_{p}(\alpha)$, where α^{2} is the first non-square in $-1,-2,2,-3,3, \ldots$.

Worked Example: Precomputation

Let $p=2^{20}-3$.

- Construct the extension field $\mathbb{F}_{p^{2}}=\mathbb{F}_{p}(\alpha)$, where α^{2} is the first non-square in $-1,-2,2,-3,3, \ldots$.
- Reduces the coefficients of $\Phi_{\ell}(X, Y) \in \mathbb{Z}[X, Y] \bmod p$ to obtain $\Phi_{\ell, p}(X, Y) \in \mathbb{F}_{p}[X, Y]$.

Worked Example: Precomputation

Let $p=2^{20}-3$.

- Construct the extension field $\mathbb{F}_{p^{2}}=\mathbb{F}_{p}(\alpha)$, where α^{2} is the first non-square in $-1,-2,2,-3,3, \ldots$.
- Reduces the coefficients of $\Phi_{\ell}(X, Y) \in \mathbb{Z}[X, Y] \bmod p$ to obtain $\Phi_{\ell, p}(X, Y) \in \mathbb{F}_{p}[X, Y]$.
- For SuperSolver, compute a list of optimal ℓ 's L.

Worked Example: Precomputation

Let $p=2^{20}-3$.

- Construct the extension field $\mathbb{F}_{p^{2}}=\mathbb{F}_{p}(\alpha)$, where α^{2} is the first non-square in $-1,-2,2,-3,3, \ldots$.
- Reduces the coefficients of $\Phi_{\ell}(X, Y) \in \mathbb{Z}[X, Y] \bmod p$ to obtain $\Phi_{\ell, p}(X, Y) \in \mathbb{F}_{p}[X, Y]$.
- For SuperSolver, compute a list of optimal ℓ 's L.

Sample our start and end node:
Start Node: $j_{1}=129007 \alpha+818380$
End Node: $j_{2}=97589 \alpha+660383$

Worked Example: Solver

Path from $j_{1}=129007 \alpha+818380$ to subfield node.

Worked Example: Solver

Path from $j_{1}=129007 \alpha+818380$ to subfield node $j_{1}^{\prime}=760776$.

Worked Example: Solver

Path from $j_{2}=97589 \alpha+660383$ to subfield node.

Worked Example: Solver

Path from $j_{2}=97589 \alpha+660383$ to subfield node $j_{2}^{\prime}=35387$.

Worked Example: Solver

Path between subfield nodes $j_{1}^{\prime}=760776$ and $j_{2}^{\prime}=35387$.

We take steps in $\mathcal{X}\left(\overline{\mathbb{F}}_{p}, \ell\right)$ with $\ell \in\{17,29,31,37\}$.

Worked Example: Solver

Path between subfield nodes $j_{1}^{\prime}=760776$ and $j_{2}^{\prime}=35387$.

We take steps in $\mathcal{X}\left(\overline{\mathbb{F}}_{p}, \ell\right)$ with $\ell \in\{17,29,31,37\}$.
In total, the path has $21+21+8=\mathbf{5 0}$ steps.

Worked Example: SuperSolver

The list of optimal ℓ 's is precomputed as $L=\{3,5\}$.

Worked Example: SuperSolver

The list of optimal ℓ 's is precomputed as $L=\{3,5\}$. Path from $j_{1}=129007 \alpha+818380$ to subfield node.

Worked Example: SuperSolver

The list of optimal ℓ 's is precomputed as $L=\{3,5\}$. Path from $j_{1}=129007 \alpha+818380$ to subfield node $j_{1}^{\prime}=35387$.

3-isogenous neighbour in \mathbb{F}_{p} ?

$$
\begin{aligned}
\Phi_{3, p}(X, 219247 \alpha+863507)= & X^{4}+(212814 \alpha+479338) X^{3}+(408250 \alpha+920025) X^{2} \\
& +(811739 \alpha+93038) X+942336 \alpha+847782
\end{aligned}
$$

Worked Example: SuperSolver

The list of optimal ℓ 's is precomputed as $L=\{3,5\}$. Path from $j_{1}=129007 \alpha+818380$ to subfield node $j_{1}^{\prime}=35387$.

3-isogenous neighbour in \mathbb{F}_{p} ?

$$
\begin{aligned}
& g_{1}=X^{4}+479338 X^{3}+920025 X^{2}+93038 X+847782 \\
& g_{2}=425628 X^{3}+816500 X^{2}+574905 X+836099
\end{aligned}
$$

Worked Example: SuperSolver

The list of optimal ℓ 's is precomputed as $L=\{3,5\}$.
Path from $j_{1}=129007 \alpha+818380$ to subfield node $j_{1}^{\prime}=35387$.

3 -isogenous neighbour in \mathbb{F}_{p} ?

$$
\begin{aligned}
& g_{1}=X^{4}+479338 X^{3}+920025 X^{2}+93038 X+847782 \\
& g_{2}=425628 X^{3}+816500 X^{2}+574905 X+836099
\end{aligned}
$$

$$
\operatorname{gcd}\left(g_{1}, g_{2}\right)=1 \Longrightarrow \text { no } 3 \text {-isogenous neighbour in } \mathbb{F}_{p}
$$

Worked Example: SuperSolver

The list of optimal ℓ 's is precomputed as $L=\{3,5\}$. Path from $j_{1}=129007 \alpha+818380$ to subfield node $j_{1}^{\prime}=35387$.

3 -isogenous neighbour in \mathbb{F}_{p} ? No.
Similarly, no 5 -isogenous neighbour in \mathbb{F}_{p}.

Worked Example: SuperSolver

The list of optimal ℓ 's is precomputed as $L=\{3,5\}$. Path from $j_{1}=129007 \alpha+818380$ to subfield node $j_{1}^{\prime}=35387$.

3-isogenous neighbour in \mathbb{F}_{p} ?

Worked Example: SuperSolver

The list of optimal ℓ 's is precomputed as $L=\{3,5\}$.
Path from $j_{1}=129007 \alpha+818380$ to subfield node $j_{1}^{\prime}=35387$.

3-isogenous neighbour in \mathbb{F}_{p} ?

$$
\begin{aligned}
\Phi_{3, p}(X, 489342 \alpha+132142)= & X^{4}+(872004 \alpha+13960) X^{3}+(1031755 \alpha+822066) X^{2} \\
& +(969683 \alpha+747785) X+813010 \alpha+255391 .
\end{aligned}
$$

Worked Example: SuperSolver

The list of optimal ℓ 's is precomputed as $L=\{3,5\}$.
Path from $j_{1}=129007 \alpha+818380$ to subfield node $j_{1}^{\prime}=35387$.

3 -isogenous neighbour in \mathbb{F}_{p} ?

$$
\begin{aligned}
& g_{1}=X^{4}+13960 X^{3}+822066 X^{2}+747785 X+255391 \\
& g_{2}=695435 X^{3}+1014937 X^{2}+890793 X+577447
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{gcd}\left(g_{1}, g_{2}\right)=X+1013186 \Longrightarrow 3 \text {-isogenous neighbour in } \mathbb{F}_{p} \\
& -1013186=35387
\end{aligned}
$$

Worked Example: SuperSolver

The list of optimal ℓ 's is precomputed as $L=\{3,5\}$.
Path from $j_{1}=129007 \alpha+818380$ to subfield node $j_{1}^{\prime}=35387$.

Worked Example: SuperSolver

The list of optimal ℓ 's is precomputed as $L=\{3,5\}$. Path from $j_{2}=97589 \alpha+660383$ to subfield node $j_{2}^{\prime}=292917$.

Worked Example: SuperSolver

The list of optimal ℓ 's is precomputed as $L=\{3,5\}$. Path between subfield nodes $j_{1}^{\prime}=35387$ and $j_{2}^{\prime}=292917$.

We take steps in $\mathcal{X}\left(\overline{\mathbb{F}}_{p}, \ell\right)$ with $\ell \in\{17,29,31,37\}$.

Worked Example: SuperSolver

The list of optimal ℓ 's is precomputed as $L=\{3,5\}$. Path between subfield nodes $j_{1}^{\prime}=35387$ and $j_{2}^{\prime}=292917$.

We take steps in $\mathcal{X}\left(\overline{\mathbb{F}}_{p}, \ell\right)$ with $\ell \in\{17,29,31,37\}$.
In total, the path has $3+3+5=\mathbf{1 1}$ steps.

Outline

(1) The Supersingular Isogeny Problem
(2) The Delfs-Galbraith Algorithm
(3) SuperSolver: Accelerating Delfs-Galbraith's Algorithm

4 Worked Example
(5) Results and Conclusions

Results

Experiments on small primes and many j-invariants.

Results

Experiments on small primes and many j-invariants. SuperSolver finds a subfield node with much fewer (on average, half) \mathbb{F}_{p} multiplications and by visiting less nodes.

Results

Experiments on small primes and many j-invariants. SuperSolver finds a subfield node with much fewer (on average, half) \mathbb{F}_{p} multiplications and by visiting less nodes.

Example: For $p=2^{24}-3$, averaging over 5000 pseudo-random supersingular j-invarants in $\mathbb{F}_{p^{2}}$, we get:

Solver used $112878 \mathbb{F}_{p}$ multiplications and walked on 1897 nodes.
SuperSolver used $53900 \mathbb{F}_{p}$ multiplications and walked on 318 nodes.

Results

Experiments on small primes and many j-invariants. SuperSolver finds a subfield node with much fewer (on average, half) \mathbb{F}_{p} multiplications and by visiting less nodes.

Experiments on cryptographic sized primes and one j-invariant. We ran SuperSolver and Solver until the number of \mathbb{F}_{p} multiplications used exceeded 10^{8}, recording the total number of nodes covered.

Results

Experiments on small primes and many j-invariants. SuperSolver finds a subfield node with much fewer (on average, half) \mathbb{F}_{p} multiplications and by visiting less nodes.

Experiments on cryptographic sized primes and one j-invariant. We ran SuperSolver and Solver until the number of \mathbb{F}_{p} multiplications used exceeded 10^{8}, recording the total number of nodes covered.

Examples:

For $p=2^{50}-27$, SuperSolver covers between 3 and 4 times the number of nodes that Solver does.
For $p=2^{800}-105$, SuperSolver covers between 18 and 19 times the number of nodes.

Conclusions

What does this mean for isogeny-based cryptography?

- We improve the concrete complexity of Delfs-Galbraith - asymptotic complexity is unchanged.

Conclusions

What does this mean for isogeny-based cryptography?

- We improve the concrete complexity of Delfs-Galbraith - asymptotic complexity is unchanged.
- No direct impact on SIDH and SIKE - there are faster claw-finding algorithms.

Conclusions

What does this mean for isogeny-based cryptography?

- We improve the concrete complexity of Delfs-Galbraith - asymptotic complexity is unchanged.
- No direct impact on SIDH and SIKE - there are faster claw-finding algorithms.
- Affects other proposals, such as B-SIDH and SQISign, with Delfs-Galbraith as their best attack.

Open Problems

Relating to SuperSolver:

Open Problems

Relating to SuperSolver:

- Can we combine $\Phi_{m}(X, j)$ and $\Phi_{n}(X, j)$ so that we can detect whether j has an $n m$-isogenous neighbour doing operations with Φ_{m} and Φ_{n} only?

Open Problems

Relating to SuperSolver:

- Can we combine $\Phi_{m}(X, j)$ and $\Phi_{n}(X, j)$ so that we can detect whether j has an $n m$-isogenous neighbour doing operations with Φ_{m} and Φ_{n} only?
- What does a quantum version of SuperSolver look like?

Open Problems

Relating to SuperSolver:

- Can we combine $\Phi_{m}(X, j)$ and $\Phi_{n}(X, j)$ so that we can detect whether j has an $n m$-isogenous neighbour doing operations with Φ_{m} and Φ_{n} only?
- What does a quantum version of SuperSolver look like?
- Other applications of subfield detection

