Accelerating the Delfs–Galbraith Algorithm with Fast Subfield Root Detection

Maria Corte-Real Santos University College London

Based on joint work with Craig Costello and Jia Shi

Isogeny-based Cryptography Workshop, Birmingham March 18, 2022

Outline

- 1 The Supersingular Isogeny Problem
- 2 The Delfs-Galbraith Algorithm
- 3 SuperSolver: Accelerating Delfs-Galbraith's Algorithm
- Worked Example
- 6 Results and Conclusions

Outline

- 1 The Supersingular Isogeny Problem
- 2 The Delfs-Galbraith Algorithm
- SuperSolver: Accelerating Delfs—Galbraith's Algorithm
- Worked Example
- Results and Conclusions

The Supersingular Isogeny Problem

In its most general form, the *supersingular isogeny problem* asks to find an isogeny

$$\phi: E_1 \to E_2$$
,

between two given supersingular elliptic curves E_1/\mathbb{F}_{p^2} and E_2/\mathbb{F}_{p^2} .

The Supersingular Isogeny Problem

In its most general form, the *supersingular isogeny problem* asks to find an isogeny

$$\phi: E_1 \to E_2$$
,

between two given supersingular elliptic curves E_1/\mathbb{F}_{p^2} and E_2/\mathbb{F}_{p^2} .

The best known classical attack against this general problem is the **Delfs–Galbraith algorithm**.

Difficulty of the supersingular isogeny problem affects the security of **B-SIDH**, **SQISign** (soundness), etc.

Difficulty of the supersingular isogeny problem affects the security of **B-SIDH**, **SQISign** (soundness), etc. So, determining the concrete complexity of Delfs–Galbraith is important for the potential standardisation of these schemes.

Difficulty of the supersingular isogeny problem affects the security of **B-SIDH**, **SQISign** (soundness), etc. So, determining the concrete complexity of Delfs–Galbraith is important for the potential standardisation of these schemes.

Our contributions:

Difficulty of the supersingular isogeny problem affects the security of **B-SIDH**, **SQISign** (soundness), etc. So, determining the concrete complexity of Delfs–Galbraith is important for the potential standardisation of these schemes.

Our contributions:

 Provide an optimised implementation of the Delfs–Galbraith algorithm: Solver.

Difficulty of the supersingular isogeny problem affects the security of **B-SIDH**, **SQISign** (soundness), etc. So, determining the concrete complexity of Delfs–Galbraith is important for the potential standardisation of these schemes.

Our contributions:

- Provide an optimised implementation of the Delfs-Galbraith algorithm: Solver.
- Develop an efficient method to detect if a polynomial $f(X) \in \mathbb{F}_{p^d}[X]$ has a root in \mathbb{F}_p .

Difficulty of the supersingular isogeny problem affects the security of **B-SIDH**, **SQISign** (soundness), etc. So, determining the concrete complexity of Delfs–Galbraith is important for the potential standardisation of these schemes.

Our contributions:

- Provide an optimised implementation of the Delfs-Galbraith algorithm: Solver.
- Develop an efficient method to detect if a polynomial $f(X) \in \mathbb{F}_{p^d}[X]$ has a root in \mathbb{F}_p .
- Use this to introduce an improved attack, SuperSolver, with lower concrete complexity.

Let p be a large prime, $p \nmid \ell$.

Let p be a large prime, $p \nmid \ell$.

Vertices: $\overline{\mathbb{F}}_p$ -isomorphism classes of supersingular elliptic curves E over $\overline{\mathbb{F}}_p$. These classes are represented by curves defined over \mathbb{F}_{p^2} and are represented by a j-invariant in \mathbb{F}_{p^2} .

Let p be a large prime, $p \nmid \ell$.

Vertices: $\bar{\mathbb{F}}_p$ -isomorphism classes of supersingular elliptic curves E over $\bar{\mathbb{F}}_p$. These classes are represented by curves defined over \mathbb{F}_{p^2} and are represented by a j-invariant in \mathbb{F}_{p^2} .

Edges: ℓ -isogenies defined over $\overline{\mathbb{F}}_p$.

Let p be a large prime, $p \nmid \ell$.

Vertices: $\overline{\mathbb{F}}_p$ -isomorphism classes of supersingular elliptic curves E over $\overline{\mathbb{F}}_p$. These classes are represented by curves defined over \mathbb{F}_{p^2} and are represented by a j-invariant in \mathbb{F}_{p^2} .

Edges: ℓ -isogenies defined over $\bar{\mathbb{F}}_p$.

Let p be a large prime, $p \nmid \ell$.

Vertices: $\bar{\mathbb{F}}_p$ -isomorphism classes of supersingular elliptic curves E over $\bar{\mathbb{F}}_p$. These classes are represented by curves defined over \mathbb{F}_{p^2} and are represented by a j-invariant in \mathbb{F}_{p^2} .

Edges: ℓ -isogenies defined over $\bar{\mathbb{F}}_p$.

Properties:

• There are $\approx \frac{p}{12}$ vertices: this is the number of supersingular j-invariants (in \mathbb{F}_{p^2}).

Let p be a large prime, $p \nmid \ell$.

Vertices: $\overline{\mathbb{F}}_p$ -isomorphism classes of supersingular elliptic curves E over $\overline{\mathbb{F}}_p$. These classes are represented by curves defined over \mathbb{F}_{p^2} and are represented by a j-invariant in \mathbb{F}_{p^2} .

Edges: ℓ -isogenies defined over $\bar{\mathbb{F}}_p$.

- There are $\approx \frac{p}{12}$ vertices: this is the number of supersingular j-invariants (in \mathbb{F}_{p^2}).
- $(\ell+1)$ -regular: one outgoing edge for each of the $\ell+1$ cyclic subgroups of $E[\ell]$.

Let p be a large prime, $p \nmid \ell$.

Vertices: $\overline{\mathbb{F}}_p$ -isomorphism classes of supersingular elliptic curves E over $\overline{\mathbb{F}}_p$. These classes are represented by curves defined over \mathbb{F}_{p^2} and are represented by a j-invariant in \mathbb{F}_{p^2} .

Edges: ℓ -isogenies defined over $\bar{\mathbb{F}}_p$.

- There are $\approx \frac{p}{12}$ vertices: this is the number of supersingular j-invariants (in \mathbb{F}_{p^2}).
- $(\ell+1)$ -regular: one outgoing edge for each of the $\ell+1$ cyclic subgroups of $E[\ell]$.
- Connected with diameter $O(\log p)$.

Let p be a large prime, $p \nmid \ell$.

Vertices: $\bar{\mathbb{F}}_p$ -isomorphism classes of supersingular elliptic curves E over $\bar{\mathbb{F}}_p$. These classes are represented by curves defined over \mathbb{F}_{p^2} and are represented by a j-invariant in \mathbb{F}_{p^2} .

Edges: ℓ -isogenies defined over $\bar{\mathbb{F}}_p$.

- There are $\approx \frac{p}{12}$ vertices: this is the number of supersingular j-invariants (in \mathbb{F}_{p^2}).
- $(\ell+1)$ -regular: one outgoing edge for each of the $\ell+1$ cyclic subgroups of $E[\ell]$.
- Connected with diameter $O(\log p)$.
- Ramanujan graph: rapid mixing.

Outline

- The Supersingular Isogeny Problem
- 2 The Delfs-Galbraith Algorithm
- SuperSolver: Accelerating Delfs-Galbraith's Algorithm
- Worked Example
- Besults and Conclusions

Key Observation

The Delfs-Galbraith Algorithm

The Delfs-Galbraith Algorithm

The Delfs-Galbraith Algorithm

The modular polynomial (of level ℓ) $\Phi_{\ell}(X,Y) \in \mathbb{Z}[X,Y]$ parameterizes pairs of ℓ -isogenous elliptic curves in terms of their j-invariants.

The modular polynomial (of level ℓ) $\Phi_{\ell}(X,Y) \in \mathbb{Z}[X,Y]$ parameterizes pairs of ℓ -isogenous elliptic curves in terms of their j-invariants. It is:

The modular polynomial (of level ℓ) $\Phi_{\ell}(X,Y) \in \mathbb{Z}[X,Y]$ parameterizes pairs of ℓ -isogenous elliptic curves in terms of their j-invariants. It is:

symmetric in X and Y

The modular polynomial (of level ℓ) $\Phi_{\ell}(X,Y) \in \mathbb{Z}[X,Y]$ parameterizes pairs of ℓ -isogenous elliptic curves in terms of their j-invariants. It is:

- symmetric in X and Y
- of degree N_{ℓ} in both X and Y, where

$$extstyle extstyle N_\ell := \prod_{i=1}^n (\ell_i + 1) \ell_i^{\mathsf{e}_i - 1}$$
 , for prime decomposition $\prod_{i=1}^n \ell_i^{\mathsf{e}_i}$ of ℓ .

 $N_\ell = \ell + 1$ for ℓ prime.

The modular polynomial (of level ℓ) $\Phi_{\ell}(X,Y) \in \mathbb{Z}[X,Y]$ parameterizes pairs of ℓ -isogenous elliptic curves in terms of their j-invariants. It is:

- symmetric in X and Y
- of degree N_{ℓ} in both X and Y, where

$$N_\ell := \prod_{i=1}^n (\ell_i + 1) \ell_i^{\mathbf{e}_i - 1}$$
, for prime decomposition $\prod_{i=1}^n \ell_i^{\mathbf{e}_i}$ of ℓ .

 $\emph{N}_\ell = \ell + 1$ for ℓ prime.

 $\Phi_{\ell}(j_1,j_2)=0 \iff j_1,j_2 \text{ are } j\text{-invariants of } \ell\text{-isogenous elliptic curves.}$

The modular polynomial (of level ℓ) $\Phi_{\ell}(X,Y) \in \mathbb{Z}[X,Y]$ parameterizes pairs of ℓ -isogenous elliptic curves in terms of their j-invariants. It is:

- symmetric in X and Y
- of degree N_{ℓ} in both X and Y, where

$$N_{\ell} := \prod_{i=1}^{n} (\ell_i + 1) \ell_i^{e_i - 1}$$
, for prime decomposition $\prod_{i=1}^{n} \ell_i^{e_i}$ of ℓ .

 $N_\ell = \ell + 1$ for ℓ prime.

 $\Phi_\ell(j_1,j_2)=0 \iff j_1,j_2 \text{ are } j\text{-invariants of } \ell\text{-isogenous elliptic curves}.$

This tells us that the roots of $\Phi_{\ell,p}(X,j)$ are neighbours of j in $\mathcal{X}(\mathbb{F}_p,\ell)$.

The modular polynomial (of level ℓ) $\Phi_{\ell}(X,Y) \in \mathbb{Z}[X,Y]$ parameterizes pairs of ℓ -isogenous elliptic curves in terms of their j-invariants. It is:

- symmetric in X and Y
- of degree N_{ℓ} in both X and Y, where

$$N_{\ell} := \prod_{i=1}^{n} (\ell_i + 1) \ell_i^{e_i - 1}$$
, for prime decomposition $\prod_{i=1}^{n} \ell_i^{e_i}$ of ℓ .

 $N_\ell = \ell + 1$ for ℓ prime.

$$\Phi_{\ell}(j_1,j_2)=0 \iff j_1,j_2 \text{ are } j\text{-invariants of } \ell\text{-isogenous elliptic curves.}$$

This tells us that the roots of $\Phi_{\ell,p}(X,j)$ are neighbours of j in $\mathcal{X}(\mathbb{F}_p,\ell)$. Reducing coefficients $\operatorname{mod} p$ we can work with $\Phi_{\ell,p}(X,Y) \in \mathbb{F}_p[X,Y]$.

Taking a self-avoiding step in $\mathcal{X}(\bar{\mathbb{F}}_p, \ell)$:

Taking a self-avoiding step in $\mathcal{X}(\bar{\mathbb{F}}_p, \ell)$:

1. Store the current and previous j-invariants j_c and j_p .

Taking a self-avoiding step in $\mathcal{X}(\bar{\mathbb{F}}_p, \ell)$:

2. Find the $N_{\ell}-1$ roots of $\Phi_{\ell,p}(X,j_c)/(X-j_p)$.

Taking a self-avoiding step in $\mathcal{X}(\bar{\mathbb{F}}_p, \ell)$:

3. Choose one of these and walk to the corresponding node.

Concrete Complexity of Delfs-Galbraith

Solver is an optimised implementation of the Delfs–Galbraith algorithm with $\ell=2$.

Why $\ell=2$? Taking a step in $\mathcal{X}(\mathbb{F}_p,2)$ means computing a square root.

Concrete Complexity of Delfs-Galbraith

Solver is an optimised implementation of the Delfs–Galbraith algorithm with $\ell=2$.

Why $\ell=2$? Taking a step in $\mathcal{X}(\mathbb{F}_p,2)$ means computing a square root.

We use Solver to find the concrete complexity of Delfs-Galbraith.

Concrete Complexity of Delfs-Galbraith

Solver is an optimised implementation of the Delfs–Galbraith algorithm with $\ell=2$.

Why $\ell=2$? Taking a step in $\mathcal{X}(\mathbb{F}_p,2)$ means computing a square root.

We use Solver to find the concrete complexity of Delfs-Galbraith.

Experimentally, given a node $j \in \mathbb{F}_{p^2} \backslash \mathbb{F}_p$, the average number of \mathbb{F}_p multiplications needed to find a path to a node $j' \in \mathbb{F}_p$ is

$$c \cdot \sqrt{p} \cdot \log_2 p$$
,

with $0.75 \le c \le 1.05$.

Outline

- 1 The Supersingular Isogeny Problem
- 2 The Delfs-Galbraith Algorithm
- 3 SuperSolver: Accelerating Delfs–Galbraith's Algorithm
- Worked Example
- Sesults and Conclusions

SuperSolver is a **new attack** that improves on the *concrete* complexity of the Delfs–Galbraith algorithm.

SuperSolver is a **new attack** that improves on the *concrete* complexity of the Delfs–Galbraith algorithm. It changes the first step: the subfield search.

SuperSolver is a **new attack** that improves on the *concrete* complexity of the Delfs–Galbraith algorithm. It changes the first step: the subfield search.

At each step, we want to know if the current node j_c is ℓ -isogenous to a $j \in \mathbb{F}_p$.

SuperSolver is a **new attack** that improves on the *concrete* complexity of the Delfs–Galbraith algorithm. It changes the first step: the subfield search.

At each step, we want to know if the current node j_c is ℓ -isogenous to a $j \in \mathbb{F}_p$.

Key Observation

At each step, the precise values of the ℓ -isogenous neighbours do not need to be known, only whether it lies in \mathbb{F}_p .

At each step of the random walk in $\mathcal{X}(\bar{\mathbb{F}}_p,2)$, SuperSolver inspects the ℓ -isogeny graph with fast subfield root detection for ℓ in a carefully chosen set, to efficiently detect whether j_c has an ℓ -isogenous neighbour in \mathbb{F}_p .

At each step of the random walk in $\mathcal{X}(\bar{\mathbb{F}}_p,2)$, SuperSolver inspects the ℓ -isogeny graph with **fast subfield root detection** for ℓ in a carefully chosen set, to efficiently detect whether j_c has an ℓ -isogenous neighbour in \mathbb{F}_p .

At each step of the random walk in $\mathcal{X}(\bar{\mathbb{F}}_p,2)$, SuperSolver inspects the ℓ -isogeny graph with **fast subfield root detection** for ℓ in a **carefully chosen set**, to efficiently detect whether j_c has an ℓ -isogenous neighbour in \mathbb{F}_p .

Recall to take a step in $\mathcal{X}(\bar{\mathbb{F}}_p,\ell)$ we find the roots of

$$\Phi_{\ell,p}(X,j_c) \in \mathbb{F}_{p^2}[X].$$

Recall to take a step in $\mathcal{X}(\bar{\mathbb{F}}_p,\ell)$ we find the roots of

$$\Phi_{\ell,p}(X,j_c) \in \mathbb{F}_{p^2}[X].$$

We want a fast way of detecting whether it has a root in \mathbb{F}_p without finding roots.

Recall to take a step in $\mathcal{X}(\bar{\mathbb{F}}_p,\ell)$ we find the roots of

$$\Phi_{\ell,p}(X,j_c) \in \mathbb{F}_{p^2}[X].$$

We want a fast way of detecting whether it has a root in \mathbb{F}_p without finding roots.

Lemma

Let π be the p-power Frobenius map and f a polynomial in $\mathbb{F}_{p^2}[X]$. Then, $\gcd(f,\pi(f))$ is the largest divisor of f defined over \mathbb{F}_p . In particular, if

$$\deg\big(\gcd(f,\pi(f))\big) = \begin{cases} 1, & f \text{ has a root in } \mathbb{F}_p \\ 0, & f \text{ does not have a root in } \mathbb{F}_p \end{cases}.$$

Problem: In general $f, \pi(f) \in \mathbb{F}_{p^2}[X]$ and we want to avoid costly multiplications in \mathbb{F}_{p^2} .

Problem: In general $f, \pi(f) \in \mathbb{F}_{p^2}[X]$ and we want to avoid costly multiplications in \mathbb{F}_{p^2} .

Observation

For polynomials $f_1, f_2 \in \mathbb{F}_{p^2}[X]$, if

$$g_1 = \textit{af}_1 + \textit{bf}_2, \text{ and } g_2 = \textit{cf}_1 + \textit{df}_2,$$

with $a,b,c,d\in\mathbb{F}_{p^2}$ such that $ad-bc\neq 0$ with we have

$$\gcd(f_1,f_2)=\gcd(g_1,g_2).$$

Problem: In general $f, \pi(f) \in \mathbb{F}_{p^2}[X]$ and we want to avoid costly multiplications in \mathbb{F}_{p^2} .

Solution: Let $\alpha \in \mathbb{F}_{p^2}$ be such that $\mathbb{F}_{p^2} = \mathbb{F}_p(\alpha)$. For $f(X) := \Phi_{\ell,p}(X,j_c)$, if

$$g_1 = \frac{1}{2}\Big(f + \pi(f)\Big), \text{ and } g_2 = \frac{lpha}{2}\Big(f - \pi(f)\Big),$$

then $g_1, g_2 \in \mathbb{F}_p[X]$ and $\gcd(f, \pi(f)) = \gcd(g_1, g_2)$.

Problem: In general $f, \pi(f) \in \mathbb{F}_{p^2}[X]$ and we want to avoid costly multiplications in \mathbb{F}_{p^2} .

Solution: Let $\alpha \in \mathbb{F}_{p^2}$ be such that $\mathbb{F}_{p^2} = \mathbb{F}_p(\alpha)$. For $f(X) := \Phi_{\ell,p}(X,j_c)$, if

$$g_1 = \frac{1}{2}\Big(f + \pi(f)\Big), \text{ and } g_2 = \frac{lpha}{2}\Big(f - \pi(f)\Big),$$

then $g_1, g_2 \in \mathbb{F}_p[X]$ and $\gcd(f, \pi(f)) = \gcd(g_1, g_2)$.

We can avoid **all** multiplications over \mathbb{F}_{p^2} : if we write the coefficients of f(X) as $a_k^{(1)} + a_k^{(2)} \alpha$ (say $\alpha^2 = -1$), then

$$g_1(X) = \sum_{k=0}^n a_k^{(1)} X^k$$
, and $g_2(X) = \sum_{k=0}^n a_k^{(2)} X^k$.

Though the inspection of the neighbours of j_c in the ℓ -isogeny graph increases the total number of \mathbb{F}_p multiplications at each step, more nodes are checked

Though the inspection of the neighbours of j_c in the ℓ -isogeny graph increases the total number of \mathbb{F}_p multiplications at each step, more nodes are checked

List of Optimal ℓ 's

Though the inspection of the neighbours of j_c in the ℓ -isogeny graph increases the total number of \mathbb{F}_p multiplications at each step, more nodes are checked.

Though the inspection of the neighbours of j_c in the ℓ -isogeny graph increases the total number of \mathbb{F}_p multiplications at each step, more nodes are checked.

We want to compute a list of ℓ 's that minimise $\#\mathbb{F}_p$ multiplications per node inspected.

Determine the cost per node revealed of taking a step in the 2-isogeny graph: cost₂

Though the inspection of the neighbours of j_c in the ℓ -isogeny graph increases the total number of \mathbb{F}_p multiplications at each step, more nodes are checked.

- Determine the cost per node revealed of taking a step in the 2-isogeny graph: cost₂
- **②** Determine the cost per node inspected in the ℓ -isogeny graph: $cost_{\ell}$.

Though the inspection of the neighbours of j_c in the ℓ -isogeny graph increases the total number of \mathbb{F}_p multiplications at each step, more nodes are checked.

- Determine the cost per node revealed of taking a step in the 2-isogeny graph: cost₂
- ② Determine the cost per node inspected in the ℓ-isogeny graph: cost_ℓ.
- **3** Determine a list $L = [\ell_1, \dots, \ell_n]$ of $\ell_i > 2$ with $cost_{\ell} < cost_2$

Though the inspection of the neighbours of j_c in the ℓ -isogeny graph increases the total number of \mathbb{F}_p multiplications at each step, more nodes are checked.

- Determine the cost per node revealed of taking a step in the 2-isogeny graph: cost₂
- **②** Determine the cost per node inspected in the ℓ -isogeny graph: cost ℓ .
- **3** Determine a list $L = [\ell_1, \dots, \ell_n]$ of $\ell_i > 2$ with $cost_\ell < cost_2$
- Find the subset of L that minimises the total cost of each step:

$$\mathsf{cost} = \frac{\mathsf{total} \ \# \ \mathsf{of} \ \mathbb{F}_{\textit{p}} \ \mathsf{multiplications}}{\mathsf{total} \ \# \ \mathsf{of} \ \mathsf{nodes} \ \mathsf{revealed}}.$$

Though the inspection of the neighbours of j_c in the ℓ -isogeny graph increases the total number of \mathbb{F}_p multiplications at each step, more nodes are checked.

We want to compute a list of ℓ 's that minimise $\#\mathbb{F}_p$ multiplications per node inspected.

- Determine the cost per node revealed of taking a step in the 2-isogeny graph: cost₂
- **②** Determine the cost per node inspected in the ℓ -isogeny graph: $cost_{\ell}$.
- **3** Determine a list $L = [\ell_1, \dots, \ell_n]$ of $\ell_i > 2$ with $cost_\ell < cost_2$
- lacktriangledown Find the subset of L that minimises the total cost of each step:

$$cost = \frac{total \# of \mathbb{F}_p \text{ multiplications}}{total \# of nodes revealed}.$$

Calculating the list of optimal ℓ 's can be done in precomputation.

Outline

- The Supersingular Isogeny Problem
- 2 The Delfs-Galbraith Algorithm
- SuperSolver: Accelerating Delfs—Galbraith's Algorithm
- Worked Example
- Sesults and Conclusions

Let
$$p = 2^{20} - 3$$
.

• Construct the extension field $\mathbb{F}_{p^2} = \mathbb{F}_p(\alpha)$, where α^2 is the first non-square in $-1, -2, 2, -3, 3, \ldots$

Let
$$p = 2^{20} - 3$$
.

- Construct the extension field $\mathbb{F}_{p^2} = \mathbb{F}_p(\alpha)$, where α^2 is the first non-square in $-1, -2, 2, -3, 3, \ldots$
- Reduces the coefficients of $\Phi_{\ell}(X,Y) \in \mathbb{Z}[X,Y] \mod p$ to obtain $\Phi_{\ell,p}(X,Y) \in \mathbb{F}_p[X,Y]$.

Let
$$p = 2^{20} - 3$$
.

- Construct the extension field $\mathbb{F}_{p^2} = \mathbb{F}_p(\alpha)$, where α^2 is the first non-square in $-1, -2, 2, -3, 3, \ldots$
- Reduces the coefficients of $\Phi_{\ell}(X,Y) \in \mathbb{Z}[X,Y] \mod p$ to obtain $\Phi_{\ell,p}(X,Y) \in \mathbb{F}_p[X,Y]$.
- For SuperSolver, compute a list of optimal ℓ 's L.

Let
$$p = 2^{20} - 3$$
.

- Construct the extension field $\mathbb{F}_{p^2} = \mathbb{F}_p(\alpha)$, where α^2 is the first non-square in $-1, -2, 2, -3, 3, \ldots$
- Reduces the coefficients of $\Phi_{\ell}(X,Y) \in \mathbb{Z}[X,Y] \mod p$ to obtain $\Phi_{\ell,p}(X,Y) \in \mathbb{F}_p[X,Y]$.
- For SuperSolver, compute a list of optimal ℓ 's L.

Sample our start and end node:

Start Node: $j_1 = 129007\alpha + 818380$

End Node: $j_2 = 97589\alpha + 660383$

Path from $j_1 = 129007\alpha + 818380$ to subfield node.

Path from $j_1 = 129007\alpha + 818380$ to subfield node $j'_1 = 760776$.

Path from $j_2 = 97589\alpha + 660383$ to subfield node.

Path from $j_2 = 97589\alpha + 660383$ to subfield node $j'_2 = 35387$.

Path between subfield nodes $j'_1 = 760776$ and $j'_2 = 35387$.

We take steps in $\mathcal{X}(\bar{\mathbb{F}}_p, \ell)$ with $\ell \in \{17, 29, 31, 37\}$.

Worked Example: Solver

Path between subfield nodes $j'_1 = 760776$ and $j'_2 = 35387$.

We take steps in $\mathcal{X}(\bar{\mathbb{F}}_p, \ell)$ with $\ell \in \{17, 29, 31, 37\}$.

In total, the path has 21 + 21 + 8 = 50 steps.

The list of optimal ℓ 's is precomputed as $L = \{3, 5\}$.

The list of optimal ℓ 's is precomputed as $L = \{3, 5\}$. Path from $j_1 = 129007\alpha + 818380$ to subfield node.

The list of optimal ℓ 's is precomputed as $L=\{3,5\}$. Path from $j_1=129007\alpha+818380$ to subfield node $j_1'=35387$.

$$\Phi_{3,p}(X, 219247\alpha + 863507) = X^4 + (212814\alpha + 479338)X^3 + (408250\alpha + 920025)X^2 + (811739\alpha + 93038)X + 942336\alpha + 847782$$

The list of optimal ℓ 's is precomputed as $L=\{3,5\}$. Path from $j_1=129007\alpha+818380$ to subfield node $j_1'=35387$.

$$g_1 = X^4 + 479338X^3 + 920025X^2 + 93038X + 847782$$

 $g_2 = 425628X^3 + 816500X^2 + 574905X + 836099$

The list of optimal ℓ 's is precomputed as $L=\{3,5\}$. Path from $j_1=129007\alpha+818380$ to subfield node $j_1'=35387$.

$$g_1 = X^4 + 479338X^3 + 920025X^2 + 93038X + 847782$$

 $g_2 = 425628X^3 + 816500X^2 + 574905X + 836099$

$$\gcd(g_1,g_2)=1 \Longrightarrow$$
 no 3-isogenous neighbour in \mathbb{F}_p

The list of optimal ℓ 's is precomputed as $L=\{3,5\}$. Path from $j_1=129007\alpha+818380$ to subfield node $j_1'=35387$.

3-isogenous neighbour in \mathbb{F}_p ? No. Similarly, no 5-isogenous neighbour in \mathbb{F}_p .

The list of optimal ℓ 's is precomputed as $L=\{3,5\}$. Path from $j_1=129007\alpha+818380$ to subfield node $j_1'=35387$.

The list of optimal ℓ 's is precomputed as $L=\{3,5\}$. Path from $j_1=129007\alpha+818380$ to subfield node $j_1'=35387$.

$$\Phi_{3,p}(X,489342\alpha+132142) = X^4 + (872004\alpha+13960)X^3 + (1031755\alpha+822066)X^2 + (969683\alpha+747785)X + 813010\alpha+255391.$$

The list of optimal ℓ 's is precomputed as $L=\{3,5\}$. Path from $j_1=129007\alpha+818380$ to subfield node $j_1'=35387$.

$$g_1 = X^4 + 13960X^3 + 822066X^2 + 747785X + 255391$$

$$g_2 = 695435X^3 + 1014937X^2 + 890793X + 577447$$

$$\gcd(g_1,g_2) = X + 1013186 \Longrightarrow \text{ 3-isogenous neighbour in } \mathbb{F}_p$$
$$-1013186 = 35387$$

The list of optimal ℓ 's is precomputed as $L = \{3, 5\}$. Path from $j_1 = 129007\alpha + 818380$ to subfield node $j_1' = 35387$.

The list of optimal ℓ 's is precomputed as $L=\{3,5\}$. Path from $j_2=97589\alpha+660383$ to subfield node $j_2'=292917$.

The list of optimal ℓ 's is precomputed as $L=\{3,5\}$. Path between subfield nodes $j_1'=35387$ and $j_2'=292917$.

We take steps in $\mathcal{X}(\bar{\mathbb{F}}_p, \ell)$ with $\ell \in \{17, 29, 31, 37\}$.

The list of optimal ℓ 's is precomputed as $L=\{3,5\}$. Path between subfield nodes $j_1'=35387$ and $j_2'=292917$.

We take steps in $\mathcal{X}(\bar{\mathbb{F}}_p, \ell)$ with $\ell \in \{17, 29, 31, 37\}$.

In total, the path has 3 + 3 + 5 = 11 steps.

Outline

- The Supersingular Isogeny Problem
- 2 The Delfs-Galbraith Algorithm
- SuperSolver: Accelerating Delfs—Galbraith's Algorithm
- 4 Worked Example
- 5 Results and Conclusions

Experiments on small primes and many j-invariants.

Experiments on small primes and many j-invariants. SuperSolver finds a subfield node with much fewer (on average, half) \mathbb{F}_p multiplications and by visiting less nodes.

Experiments on small primes and many j-invariants. SuperSolver finds a subfield node with much fewer (on average, half) \mathbb{F}_p multiplications and by visiting less nodes.

Example: For $p = 2^{24} - 3$, averaging over 5000 pseudo-random supersingular j-invarants in \mathbb{F}_{p^2} , we get:

Solver used $112878 \mathbb{F}_p$ multiplications and walked on 1897 nodes.

SuperSolver used 53900 \mathbb{F}_p multiplications and walked on 318 nodes.

Experiments on small primes and many j-invariants. SuperSolver finds a subfield node with much fewer (on average, half) \mathbb{F}_p multiplications and by visiting less nodes.

Experiments on cryptographic sized primes and one j-invariant. We ran SuperSolver and Solver until the number of \mathbb{F}_p multiplications used exceeded 10^8 , recording the total number of nodes covered.

Experiments on small primes and many j-invariants. SuperSolver finds a subfield node with much fewer (on average, half) \mathbb{F}_p multiplications and by visiting less nodes.

Experiments on cryptographic sized primes and one j-invariant. We ran SuperSolver and Solver until the number of \mathbb{F}_p multiplications used exceeded 10^8 , recording the total number of nodes covered.

Examples:

For $p = 2^{50} - 27$, SuperSolver covers between 3 and 4 times the number of nodes that Solver does.

For $p = 2^{800} - 105$, SuperSolver covers between 18 and 19 times the number of nodes.

Conclusions

What does this mean for isogeny-based cryptography?

• We improve the concrete complexity of Delfs–Galbraith - asymptotic complexity is unchanged.

Conclusions

What does this mean for isogeny-based cryptography?

- We improve the concrete complexity of Delfs–Galbraith asymptotic complexity is unchanged.
- No direct impact on SIDH and SIKE there are faster claw-finding algorithms.

Conclusions

What does this mean for isogeny-based cryptography?

- We improve the concrete complexity of Delfs–Galbraith asymptotic complexity is unchanged.
- No direct impact on SIDH and SIKE there are faster claw-finding algorithms.
- Affects other proposals, such as B-SIDH and SQISign, with Delfs-Galbraith as their best attack.

Relating to SuperSolver:

Relating to SuperSolver:

• Can we combine $\Phi_m(X,j)$ and $\Phi_n(X,j)$ so that we can detect whether j has an nm-isogenous neighbour doing operations with Φ_m and Φ_n only?

Relating to SuperSolver:

- Can we combine $\Phi_m(X,j)$ and $\Phi_n(X,j)$ so that we can detect whether j has an nm-isogenous neighbour doing operations with Φ_m and Φ_n only?
- What does a quantum version of SuperSolver look like?

Relating to SuperSolver:

- Can we combine $\Phi_m(X,j)$ and $\Phi_n(X,j)$ so that we can detect whether j has an nm-isogenous neighbour doing operations with Φ_m and Φ_n only?
- What does a quantum version of SuperSolver look like?
- Other applications of subfield detection